UV-B Radiation as a Novel Tool to Modulate the Architecture of In Vitro Grown Mentha spicata (L.)

Author:

Crestani Gaia,Cunningham Natalie,Badmus Uthman O.,Prinsen ElsORCID,Jansen Marcel A. K.ORCID

Abstract

In vitro culturing can generate plants with a distorted morphology. Some distortions affect the plant’s survival after transfer to an ex vitro environment, while others can affect the aesthetic value. Therefore, exogenous hormones are often applied in in vitro cultures to modulate plant architecture. In this study, it was hypothesised that regulatory effects of UV-B radiation on plant morphology can be exploited under in vitro conditions, and that UV exposure will result in sturdier, less elongated plants with more branches and smaller leaves, mediated by changes in plant hormones. Plants were grown in tissue-culture containers and exposed to ~0.22 W m−2 UV-B for 8 days. Subsequently, plants were transferred to soil and monitored for a further 7 days. Results show that UV induced a marked change in architecture with a significant increase in axillary branches, and reductions in leaf area, plant height and root weight. These changes were associated with significant alterations in concentrations of hormones, including IAA, GA7, GA3 and iP–9–G. Changes in hormone concentrations suggest a regulatory, rather than a stress response to UV-B. Therefore, it is proposed that the application of UV in in vitro culture can be an innovative approach to manipulate plant architecture.

Funder

Science Foundation Ireland

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference38 articles.

1. History of plant tissue culture;Thorpe;Mol. Biotechnol.,2007

2. Acclimatization of in Vitro-derived Dendrobium;Hossain;Hortic. Plant J.,2017

3. The possibilities and challenges of in vitro methods for plant conservation;Pence;Kew Bull.,2010

4. Morpho-physiological disorders in in vitro culture of plants;Hazarika;Sci. Hortic.,2006

5. The effects of in vitro culture on the leaf anatomy of Jatropha curcas L. (Euphorbiaceae);Rodrigues;Biosci. J.,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3