Affiliation:
1. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Sun Yat-sen University, Shenzhen 518000, China
Abstract
Cadmium (Cd) contamination is a global environmental challenge that threatens human food security. Lime combined with five different organic materials (rape seed cake, mushroom residue, straw, sawdust, and corn cobs) (LOM) at application ratios of 1:1 and lime sawdust combined with nitro-compound fertilizer (Ca(NO3)2·4H2O, KH2PO4, KNO3) (LSF) at different application rates were applied to Cd-contaminated soil. The present study investigates the effects of these organic–inorganic compound amendments on Cd bioavailability in soil, and Cd uptake and accumulation by edible Artemisia selengensis parts. A. selengensis was cultivated for three consecutive seasons in Cd-contaminated soil. LOM and LSF treatments obviously reduced the uptake and accumulation of Cd. Compared with the control soil, contents of Cd in edible parts of A. selengensis decreased by 19.26–33.33% and 26.67–32.78% in the first season, 18.60–32.79% and 18.37–32.79% in the second season, and 20.45–40.68% and 34.32–37.27% in the third season, respectively. The addition of Lime + Mushroom Residue and 70% Nitro-compound Fertilizer + Lime + Sawdust most significantly reduced Cd concentrations in the edible parts of the third A. selengensis season. LOM and LSF application increased soil pH and improved soil fertility, including available nitrogen, available phosphorus, available potassium, organic matter, and cation exchange capacity. Lime + Mushroom Residue improved plant yield the most. In addition, Lime + Mushroom Residue and 70% Nitro-compound Fertilizer + Lime + Sawdust had the lowest Cd accumulation and health risk indices, respectively. In conclusion, the Lime + Mushroom Residue and 70% Nitro-compound Fertilizer + Lime + Sawdust amendments significantly reduced health risks, enhanced A. selengensis growth, and promoted sustainable development of arable land under Cd-contaminated soil remediation.
Funder
2021 Soil Pollution Prevention and Central Project “Jiangsu Province Contaminated Land Safe Utilization Promotion Zone (Demonstration Base) Construction
Subject
Agronomy and Crop Science