Metabolomics Reveal That the High Application of Phosphorus and Potassium in Tea Plantation Inhibited Amino-Acid Accumulation but Promoted Metabolism of Flavonoid

Author:

Wei Kailing,Liu Meiya,Shi Yifan,Zhang Hua,Ruan Jianyun,Zhang Qunfeng,Cao Minhui

Abstract

As leaf-harvest plants, tea trees show unique nutrient requirements, different from those of corn and other field crops. However, the effects of nitrogen (N), phosphorus (P), and potassium (K) application on the accumulation of quality-related compounds and the mechanisms underlying how nutrients affect tea-leaf metabolism have not been well elucidated. Here, fertilizers with different N, P, K ratios were applied to tea plants in pot experiments, and metabolomics based on gas chromatography-mass spectrometry (GC-MS) combined with multivariate statistical and quantitative detections were conducted to assess the responses of quality-related compounds to NPK in tea leaves. An increased proportion of P and K was beneficial for the accumulation of carbohydrates and catechins in shoots, although the total carbon content did not increase significantly. In contrast, a high proportion of P and K input reduced the relative chlorophyll content in shoots, and the contents of free amino acids such as theanine and glutamic acid negatively correlated with P and K nutrient content. Moreover, the metabolism of malic acid in the tricarboxylic acid cycle was highly promoted by increasing the application of P and K. These results validate our suggestion that the application of high amounts of P and K in tea plantations induces the biased reallocation of photosynthates and carbohydrates to the catechin pathway by promoting malic acid metabolism in young tea shoots, which further affects tea quality. The results of this study provide theoretical ground for tea quality improvement by optimizing fertilization strategies.

Funder

Agricultural Sciences Innovation Project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3