The Mangrove Swamp Rice Production System of Guinea Bissau: Identification of the Main Constraints Associated with Soil Salinity and Rainfall Variability

Author:

Garbanzo Gabriel123ORCID,Cameira Maria1ORCID,Paredes Paula1ORCID

Affiliation:

1. LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal

2. Center for Crop System Analysis, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands

3. Agronomic Research Center, School of Agriculture, University of Costa Rica, San José 11501-2060, Costa Rica

Abstract

Mangrove swamp rice production (MSRP) refers to rice cultivation in former mangrove soils that have been anthropogenically modified for food production. The method utilizes the largest possible storage of fresh water to desalinate the soils and make them productive. However, temporal variability in rainfall patterns causes loss of efficiency in production, impacting crop growth and reducing productivity. To improve MSRP, it is necessary to identify the primary constraints associated with salinity, enhancing and maximizing freshwater storage efficiency and water productivity. This study provides a general description of the MSRP system in both the northern and southern regions of Guinea-Bissau, aiming at the identification of the main water management limitations. The description involves the use of typologies and the identification of zones with specific characteristics within the paddies. Furthermore, this review includes an analysis of the physicochemical characteristics of soils in relation to salinity issues, descriptions of agronomic management, rice varieties, and the significance of managing dikes and bunds to improve mangrove swamp rice water management. This study shows how the MSRPS is characterized by dynamism and complexity, involving a wide range of constraints associated with salinity features, cultural influences, and microclimatic conditions that are subject to temporal variations.

Funder

European Union

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3