Affiliation:
1. Remote Sensing Centre, Institute of Geodesy and Cartography, 02-679 Warsaw, Poland
Abstract
This study, employing the AquaCrop model, demonstrated notable efficacy in assessing and predicting crop yields for winter wheat, maize, winter rapeseed, and sugar beets in the Joint Experiment for Crop Assessment and Monitoring (JECAM) test area of Poland from 2018 to 2023. In-situ measurements, conducted through field campaigns, included parameters such as electromagnetic radiation reflectance, Leaf Area Index (LAI), soil moisture, accumulated photosynthetically active radiation, chlorophyll content, and plant development phase. The model was calibrated with input data covering daily climatic parameters from the ERA5-land Daily Aggregated repository, crop details, and soil characteristics. Specifically, for winter wheat, the Root Mean Square Error (RMSE) values ranged from 1.92% to 14.26% of the mean yield per hectare. Maize cultivation showed RMSE values ranging from 0.21% to 1.41% of the mean yield per hectare. Winter rapeseed exhibited RMSE values ranging from 0.58% to 17.15% of the mean yield per hectare. In the case of sugar beets, the RMSE values ranged from 0.40% to 1.65% of the mean yield per hectare. Normalized Difference Vegetation Index (NDVI)-based predictions showed higher accuracy for winter wheat, similar accuracy for maize and sugar beets, but lower accuracy for winter rapeseed compared to Leaf Area Index (LAI). The study contributes valuable insights into agricultural management practices and facilitates decision-making processes for farmers in the region.
Funder
National Centre for Research and Development