Abstract
Surface quality is key for any adsorbent to have an effective adsorption. Because analyzing an adsorbent can be costly, we established an imagery protocol to determine adsorption robustly yet simply. To validate our hypothesis of whether stereomicroscopy, superpixel segmentation and fractal theory consist of an exceptional merger for high-throughput predictive analytics, we developed carbon-capturing biointerfaces by pelletizing hydrochars of sugarcane bagasse, pinewood sawdust, peanut pod hull, wheat straw, and peaty compost. The apochromatic stereomicroscopy captured outstanding micrographs of biointerfaces. Hence, it enabled the segmenting algorithm to distinguish between rough and smooth microstructural stresses by chromatic similarity and topological proximity. The box-counting algorithm then adequately determined the fractal dimension of microcracks, merely as a result of processing segments of the image, without any computational unfeasibility. The larger the fractal pattern, the more loss of functional gas-binding sites, namely N and S, and thus the potential sorption significantly decreases from 10.85 to 7.20 mmol CO2 g−1 at sigmoid Gompertz function. Our insights into analyzing fractal carbon-capturing biointerfaces provide forward knowledge of particular relevance to progress in the field’s prominence in bringing high-throughput methods into implementation to study adsorption towards upgrading carbon capture and storage (CCS) and carbon capture and utilization (CCU).
Funder
Coordenação de Aperfeicoamento de Pessoal de Nível Superior
Subject
Agronomy and Crop Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献