Strawberry Defect Identification Using Deep Learning Infrared–Visible Image Fusion

Author:

Lu Yuze1,Gong Mali1,Li Jing2,Ma Jianshe3

Affiliation:

1. Key Laboratory Photonic Control Technology, Ministry of Education, Tsinghua University, Beijing 100083, China

2. International Joint Research Center for Smart Agriculture and Water Security of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China

3. Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

Abstract

Feature detection of strawberry multi-type defects and the ripeness stage faces huge challenges because of color diversity and visual similarity. Images from hyperspectral near-infrared (NIR) information sources are also limited by their low spatial resolution. In this study, an accurate RGB image (with a spatial resolution of 2048×1536 pixels) and NIR image (ranging from 700–1100 nm in wavelength, covering 146 bands, and with a spatial resolution of 696×700 pixels) fusion method was proposed to improve the detection of defects and features in strawberries. This fusion method was based on a pretrained VGG-19 model. The high-frequency parts of original RGB and NIR image pairs were filtered and fed into the pretrained VGG-19 simultaneously. The high-frequency features were extracted and output into ReLU layers; the l1-norm was used to fuse multiple feature maps into one feature map, and area pixel averaging was introduced to avoid the effect of extreme pixels. The high- and low-frequency parts of RGB and NIR were summed into one image according to the information weights at the end. In the validation section, the detection dataset included expanded 4000 RGB images and 4000 NIR images (training and testing set ratio was 4:1) from 240 strawberry samples labeled as mud contaminated, bruised, both defects, defect-free, ripe, half-ripe, and unripe. The detection neural network YOLOv3-tiny operated on RGB-only, NIR-only, and fused image input modes, achieving the highest mean average precision of 87.18% for the proposed method. Finally, the effects of different RGB and NIR weights on the detection results were also studied. This research demonstrated that the proposed fusion method can greatly improve the defect and feature detection of strawberry samples.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3