Detecting Irrigation Events over Semi-Arid and Temperate Climatic Areas Using Sentinel-1 Data: Case of Several Summer Crops

Author:

Bazzi Hassan,Baghdadi NicolasORCID,Najem Sami,Jaafar HadiORCID,Le Page Michel,Zribi MehrezORCID,Faraslis IoannisORCID,Spiliotopoulos Marios

Abstract

Irrigation monitoring is of great importance in agricultural water management to guarantee better water use efficiency, especially under changing climatic conditions and water scarcity. This study presents a detailed assessment of the potential of the Sentinel-1 (S1) Synthetic Aperture Radar (SAR) data to detect irrigation events at the plot scale. The potential of the S1 data to detect the irrigation events was carried out using the Irrigation Event Detection Model (IEDM) over semi-arid and temperate oceanic climates in five study sites in south Europe and the Middle East. The IEDM is a decision tree model initially developed to detect irrigation events using the change detection algorithm applied to the S1 time series data. For each study site and at each agricultural plot, all available S1 images during the period of irrigation were used to construct an S1 time series and apply the IEDM. Different types of major summer irrigated crops were analyzed in this study, including Maize, Soybean, Sorghum and Potato, mainly with the sprinkler irrigation technique. The irrigation detection accuracy was evaluated using S1 images and the IEDM against the climatic condition of the studied area, the vegetation development (by means of the normalized difference vegetation index, NDVI) and the revisit time of the S1 sensor. The main results showed generally good overall accuracy for irrigation detection using the S1 data, reaching 67% for all studied sites together. This accuracy varied according to the climatic conditions of the studied area, with the highest accuracy for semi-arid areas and lowest for temperate areas. The analysis of the irrigation detection as a function of the crop type showed that the accuracy of irrigation detection decreases as the vegetation becomes well developed. The main findings demonstrated that the density of the available S1 images in the S1 time series over a given area affects the irrigation detection accuracy, especially for temperate areas. In temperate areas the irrigation detection accuracy decreased from 70% when 15 to 20 S1 images were available per month to reach less than 56% when less than 10 S1 images per month were available over the study sites.

Funder

French Space Study Center

French Agency for Ecological Transition

National Research Institute for Agriculture, Food and the Environment

Google.org and the Tides Foundation

project HubIS under the PRIMA 2019 program of the European Commission

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3