Abstract
We conducted a two-year field experiment on winter wheat (Triticum aestivum L.) from 2016–2018 to compare the effects of reducing nitrogen application rate in spring under three irrigation methods on grain yield (GY), water and nitrogen use efficiency in the North China Plain (NCP). Across the two years, GY of conventional irrigation (CI), micro-sprinkling irrigation (SI) and drip irrigation (DI) decreased by 6.35%, 9.84% and 6.83%, respectively, in the reduced nitrogen application rate (N45) than the recommended nitrogen application rate (N90). However, micro-irrigation (SI and DI) significantly increased GY relative to CI under the same nitrogen application rate, and no significant difference was observed in GY between SI and DI under N45, while SI obtained the highest GY under N90. The difference among different treatments in GY was mainly due to the variation in grain weight. The seasonal evapotranspiration (ET) in N45 was decreased more significantly than N90, and there was no significantly difference in ET among different irrigation methods under N45, but micro-irrigation significantly decreased the ET relative to CI under N90. Micro-irrigation significantly improved water use efficiency (WUE) compared to CI at the same nitrogen application rate. Under N45, compared with CI, WUE in SI and DI increased by 9.09% and 4.70%, respectively; however, the WUE increased by 15.9% and 7.23%, respectively, under N90. Reducing nitrogen application rate did not have a significant impact on WUE under CI, but it did have a substantial negative impact on SI and DI. Nitrogen accumulation in wheat plants at maturity (NAM) in N45 deceased significantly compared with N90 under the same irrigation method. Compared with CI under the same nitrogen application rate, micro-irrigation treatments significantly increased NAM, while SI was the largest. In comparison to N90, under three irrigation methods, N45 significantly increased nitrogen fertilizer use efficiency (NfUE). The highest NfUE was attained in SI, followed by DI, while CI was the lowest. Moreover, N45 significantly decreased soil NO3−-N accumulation (SNC) in three irrigation methods, and micro-irrigation significantly decreased the SNC in deep soil layers compared with CI when nitrogen is applied at the same level. Overall, micro-irrigation with a reduced nitrogen application rate in spring can achieve a relatively higher production of winter wheat while increasing the use efficiency of water and nitrogen and reducing soil NO3−-N leaching into deep soil layers in the NCP.
Funder
National Natural Science Foundation of China
China Agriculture Research System of MOF and MARA
Subject
Agronomy and Crop Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献