Abstract
Biomass for non-food applications is considered as a substitute for petro-based materials such as expanded polystyrene (EPS). This research analyzes physical properties of an EPS containing commercial bonded leveling compound (BLC) which was substituted with cup plant (Silphium perfoliatum L.) biomass. Cup plant is a high-yielding biomass plant with several ecological benefits that is yet mainly used for biogas production. Furthermore, the high amount of parenchyma in senescent biomass with its EPS-like structure could be a possible substitute for petrochemical foams in lightweight aggregates. The natural variation in parenchyma content of several European cup plant accessions is promising, regarding the development of cultivars with suitable biomass properties for the proposed material use. Two binders with different proportions of cup plant and EPS were used to produce samples of BLC for thermal conductivity and compression strength tests. The compression strength of 0.92 N mm−2 and a thermal conductivity of 84 mW m−1 K−1 were analyzed and comparable to the commercial BLC. The thermal conductivity within the tested borders appears nearly independent of the biomass content. With increasing cup plant content, the shape characteristics of the lightweight aggregate mix changes towards more elongated aggregates. The mechanical strength and thermal conductivity are highly sensitive to the water demand of the biomass. Direct partial substitution of EPS by cup plant appears feasible and could be a part of the decarbonization of the construction sector.
Subject
Agronomy and Crop Science
Reference71 articles.
1. Buildings and Climate Change: Summary for Decision-Makers,2009
2. Buildings as a global carbon sink
3. CO2 Capture and Storage (CCS) in Energy-Intensive Industries: An Indispensable Route to an EU Low-Carbon Economy; European Technology Platform for Zero Emission Fossil Fuel Power Plants; 2013
https://zeroemissionsplatform.eu/wp-content/uploads/ZEP-report_-CCS-in-industry-1.pdf
4. A trade-off between plant and soil carbon storage under elevated CO2
5. A Review of the Role of Vegetal Ecosystems in CO2 Capture
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献