The Adaptability of APSIM-Wheat Model in the Middle and Lower Reaches of the Yangtze River Plain of China: A Case Study of Winter Wheat in Hubei Province

Author:

Zhao Panpan,Zhou Yang,Li Fengfeng,Ling Xiaoxia,Deng Nanyan,Peng Shaobing,Man Jianguo

Abstract

The middle and lower reaches of the Yangtze River (MLYR) plain represent the second-largest wheat producing area in China; the winter wheat-rice system is one of the main planting systems in this region. The use of the agricultural production system simulator (APSIM)-wheat model to simulate wheat production potential and evaluate the impact of future climate change on wheat production in this region is of great importance. In this study, the adaptability of the APSIM-wheat model in the MLYR was evaluated based on observational data collected in field experiments and daily meteorological data from experimental stations in Wuhan, Jingmen, and Xiangyang in Hubei province. The results showed significant positive relationships between model-predicted wheat growth duration from sowing to anthesis and maturity and the observed values, with coefficients of determination (R2) in ranges of 0.90–0.97 and 0.93–0.96, respectively. The normalized root-mean-square error (NRMSE) of the simulated growth durations and measured values were lower than 1.6%, and the refined index of agreement (dr-values) was in the range of 0.74–0.87. The percent mean absolute relative error (PMARE) was cited here as a new index, with a value below 1.4%, indicating that the model’s rating was excellent. The model’s performance in terms of grain yield and above-ground biomass simulation was also acceptable, although it was not as good as the growth periods simulation. The R2 value was higher than 0.75 and 0.72 for the simulation of grain yield and biomass, respectively. The indices NRMSE and PMARE were lower than 19.8% and 19.9%, and the dr-value was higher than 0.71. According to our results, APSIM-wheat was an effective and accurate model for simulating the phenology and yield production processes of wheat in the MLYR, and the results also provided a theoretical basis and technical support for further research on the yield potential of wheat-rice rotation planting systems with clarification of the key factors limiting the yield gap in this region.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3