Relationship among Electrical Signals, Chlorophyll Fluorescence, and Root Vitality of Strawberry Seedlings under Drought Stress

Author:

Zhou Juan,Yuan Weidong,Di BaoORCID,Zhang Guanghua,Zhu Jianxi,Zhou Pengyu,Ding Tianran,Qian JiORCID

Abstract

Drought area expansion has a great impact on the growth and development of plants. To contribute to the water management of strawberry, this work aims to study the chronological relationship between the electrical signals and representative physiological parameters of strawberry seedlings under drought stress. This study analyzed the characteristic variables of the electrical signals; physiological parameters under drought; and control treatments. Moreover, we compared the chronological sequence of the appearance of significant differences between drought and control treatment in terms of their physiological parameters and electrical signals. The results showed that with the increase of drought treatment, the time domain parameters (peak-to-peak value, standard deviation) and frequency domain parameters (spectral of central gravity, power spectrum entropy) of the drought-treated electrical signals showed significant differences from the control on Day 2 and Day 6, respectively (p < 0.05). The root vitality of the drought treatment was significantly different from the control on Day 4 (p < 0.05); the Fv/Fm and the SPAD were significantly different (p < 0.05) on Day 7. Electrical signals first start to show a significant difference between drought and control treatment, followed by physiological parameters. Therefore, the electrical signal can be used as an early indicator of drought stress conditions. This will provide a scientific basis for the actual water management of strawberry seedlings. It also provides a methodological and theoretical basis for other studies analyzing the relationship between plant physiological parameters and electrical signals under other stress conditions.

Funder

China Agriculture Research System

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3