Spectroscopic and Microscopic Analysis of Humic Acid Isolated from Stabilized Leachate HSs Fractionation

Author:

Ahmed Zaber12,Yusoff Mohd Suffian1ORCID,Mokhtar Kamal Nurul Hana1,Abdul Aziz Hamidi1ORCID,Roulia Maria3ORCID

Affiliation:

1. School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia

2. Department of Civil Engineering, Model Institute of Science & Technology, DUET, Gazipur 1707, Bangladesh

3. Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 157 71 Athens, Greece

Abstract

Refractory humic substances (HSs), which include humic and fulvic acid as well as hydrophilic portion, are the prime pollutants of stabilized landfill leachate with a concentrated color and chemical oxygen demand (COD). Spectroscopic and microscopic analysis of humic acid remaining in stabilized leachate as a pollutant contributor were conducted in this study. Microfiltration and centrifugation processes were applied to fractionate the humic acid from the HSs of stabilized leachate. The three-stage isolation process recovered a maximum of 1412 ± 2.5 mg/L (Pulau Burung leachate), 1510 ± 1.5 mg/L (Alor Pongsu leachate) at pH 1.5 and 1371 ± 2.5 mg/L (PBLS), and 1451 ± 1.5 mg/L (APLS) of humic acid (about 42% of the total COD concentration) at pH 2.5, which eventually indicates the efficiency of the process. The spectroscopic analysis of isolated humic acid through scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR) significantly indicates the existence of identical elements in the recovered humic acid. The subsequent reduction (around 37%, 36%, and 39%) in ultra-violet absorbance values (UV254, UV280), COD, and color in the humic acid isolated leachate indicates the acid’s significant contribution as a toxic pollutant through aromaticity and conjugated double-bond compounds.

Funder

Ministry of Higher Education

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3