Using 15N Isotope to Evaluate the Effect of Brown Coal Application on the Nitrogen Fate in the Soil–Plant System

Author:

Lei HongjunORCID,Lian Yingji,Kyaw Pan Ei EiORCID,Bai Mei,Leghari Shah Jahan,Pan Hongwei,Xiao ZheyuanORCID,Chen Deli

Abstract

The problems of high nitrogen (N) fertilizer application rate and low N utilization efficiency are common worldwide in vegetable plantations. Application of brown coal (BC, also known as lignite) can increase crop yield and fertilizer N recovery efficiency (NRE). However, the effect of BC application on the utilization and distribution of exogenous N in the soil–plant system under different fertilization strategies is unclear. The pot experiment was set up in three factors of randomized design, including 15N-labeled urea fertilizer, BC, and organic manure, and pakchoi was used as the test crop. There were five rates of 15N-labeled urea, including 0, 100, 200, 300, and 400 kg N ha−1, two rates of BC with 5 and 0 t ha−1, and the organic manure with 0 t ha−1 which constitutes ten treatments. The other four treatments were the combination of one 15N-labeled urea rate of 100 kg N ha−1, two rates of BC with 5 and 0 t ha−1, and two rates of organic manure with 100 and 0 kg N ha−1. In conclusion, the interaction of all N fertilizer rates combined with BC improved soil 15N retention efficiency by 10.14% compared without BC amendment. Between 200 and 300 kg N ha−1, the average potential loss rate of 15N decreased by 10.41%. The application of BC could reduce N loss by enhancing plant N uptake and increasing soil retention. The combined use of 200 kg N ha−1 fertilizer and 5 t ha−1 of BC would maintain a high fertilizer NRE and ensure pakchoi yield.

Funder

National Natural Science Foundation of China

Science and Technology Research Plan in Henan province

Major Science and Technology Innovation Project in Shandong, Key Research & Development Plan

Innovative Education Program for Graduate Students at North China University of Water Resources and Electric Power

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3