High Sink Capacity Improves Rice Grain Yield by Promoting Nitrogen and Dry Matter Accumulation

Author:

Cheng Fangwei,Bin Shiyou,Iqbal AnasORCID,He Lijian,Wei Shanqing,Zheng Hao,Yuan Pengli,Liang He,Ali IzharORCID,Xie Dongjie,Yang Xinxin,Xu Anjie,Ullah SaifORCID,Jiang LigengORCID

Abstract

Sink capacity, nitrogen (N), and dry matter accumulation (DMA) all play essential roles in promoting high rice grain yield, but their relationship is unclear. Here, a field experiment was conducted from 2020 to 2021 with Zhuangxiangyou Baijin 5 as the test cultivar. Two rates of N (T1 = 90 kg ha−1 N and T2 = 180 kg ha−1 N) and three transplanting densities (272,000 hills ha−1 (M1), 238,000 hills ha−1 (M2), and 206,000 hills ha−1 (M3)) were used to investigate rice grain yield and corresponding yield attributes. The results showed significant differences in rice yield, sink capacity, N and DMA, and the leaf area index (LAI) at the heading stage among the different treatments. The results showed that the output of T2M1 was the highest in 2020, increasing by 16.6% compared with the lowest output, while the output of T2M2 was the highest in 2021, increasing by 11.9% compared with the lowest output. During 2020, the highest sink capacity, LAI at the heading stage, and maximum dry matter accumulation at the maturity stage of rice were recorded in T2M1, while the highest N accumulation was recorded in T2M2. Furthermore, the sink capacity, as well as levels of N and DMA, of rice in 2020 was higher in T2M2, and the LAI was higher in T2M1 at the heading stage. Correlation analyses showed that yield was significantly positively correlated with N and DMA. In addition, a significant positive correlation between sink capacity and DMA was observed during both years, while a significant positive correlation between sink capacity and N accumulation was observed in 2021. Thus, we conclude that a high sink capacity can increase rice yield by increasing N and DMA because a high sink capacity is the internal driving force of high rice grain yield. In conclusion, the T2M1 regimen is a promising approach for improving the grain yield of paddy rice.

Funder

Department of Agriculture and Rural Affairs of Gaungxi Zhuang Autonomous Region

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3