Seedling-YOLO: High-Efficiency Target Detection Algorithm for Field Broccoli Seedling Transplanting Quality Based on YOLOv7-Tiny

Author:

Zhang Tengfei12,Zhou Jinhao12,Liu Wei12,Yue Rencai12ORCID,Yao Mengjiao12,Shi Jiawei12,Hu Jianping12

Affiliation:

1. School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China

2. Jiangsu Provincial Key Laboratory of Hi-Tech Research for Intelligent Agricultural Equipment, Jiangsu University, Zhenjiang 212013, China

Abstract

The rapid and accurate detection of broccoli seedling planting quality is crucial for the implementation of robotic intelligent field management. However, existing algorithms often face issues of false detections and missed detections when identifying the categories of broccoli planting quality. For instance, the similarity between the features of broccoli root balls and soil, along with the potential for being obscured by leaves, leads to false detections of “exposed seedlings”. Additionally, features left by the end effector resemble the background, making the detection of the “missed hills” category challenging. Moreover, existing algorithms require substantial computational resources and memory. To address these challenges, we developed Seedling-YOLO, a deep-learning model dedicated to the visual detection of broccoli planting quality. Initially, we designed a new module, the Efficient Layer Aggregation Networks-Pconv (ELAN_P), utilizing partial convolution (Pconv). This module serves as the backbone feature extraction network, effectively reducing redundant calculations. Furthermore, the model incorporates the Content-aware ReAssembly of Features (CARAFE) and Coordinate Attention (CA), enhancing its focus on the long-range spatial information of challenging-to-detect samples. Experimental results demonstrate that our Seedling-YOLO model outperforms YOLOv4-tiny, YOLOv5s, YOLOv7-tiny, and YOLOv7 in terms of speed and precision, particularly in detecting ‘exposed seedlings’ and ‘missed hills’-key categories impacting yield, with Average Precision (AP) values of 94.2% and 92.2%, respectively. The model achieved a mean Average Precision of 0.5 (mAP@0.5) of 94.3% and a frame rate of 29.7 frames per second (FPS). In field tests conducted with double-row vegetable ridges at a plant spacing of 0.4 m and robot speed of 0.6 m/s, Seedling-YOLO exhibited optimal efficiency and precision. It achieved an actual detection precision of 93% and a detection efficiency of 180 plants/min, meeting the requirements for real-time and precise detection. This model can be deployed on seedling replenishment robots, providing a visual solution for robots, thereby enhancing vegetable yield.

Funder

Government of Jiangsu Province

Publisher

MDPI AG

Reference47 articles.

1. Wang, H., He, J., Aziz, N., and Wang, Y. (2022). Spatial Distribution and Driving Forces of the Vegetable Industry in China. Land, 11.

2. Advancement of mechanized transplanting technology and equipments for field crops;Yu;Trans. CSAE,2022

3. Development status and trend of agricultural robot technology;Jin;Int. J. Agric. Biol. Eng.,2021

4. Design and experiment of transplanting machine for cabbage substrate block seedlings;Cui;INMATEH Agric. Eng.,2021

5. Design of intelligent transplanting system for vegetable pot seedling based on PLC control;Ji;J. Intell. Fuzzy Syst.,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3