Assessment of Soil Suitability Using Machine Learning in Arid and Semi-Arid Regions

Author:

Ismaili Maryem,Krimissa Samira,Namous MustaphaORCID,Htitiou AbdelazizORCID,Abdelrahman Kamal,Fnais Mohammed S.,Lhissou RachidORCID,Eloudi Hasna,Faouzi Elhousna,Benabdelouahab Tarik

Abstract

Increasing agricultural production is a major concern that aims to increase income, reduce hunger, and improve other measures of well-being. Recently, the prediction of soil-suitability has become a primary topic of rising concern among academics, policymakers, and socio-economic analysts to assess dynamics of the agricultural production. This work aims to use physico-chemical and remotely sensed phenological parameters to produce soil-suitability maps (SSM) based on Machine Learning (ML) Algorithms in a semi-arid and arid region. Towards this goal an inventory of 238 suitability points has been carried out in addition to14 physico-chemical and 4 phenological parameters that have been used as inputs of machine-learning approaches which are five MLA prediction, namely RF, XgbTree, ANN, KNN and SVM. The results showed that phenological parameters were found to be the most influential in soil-suitability prediction. The validation of the Receiver Operating Characteristics (ROC) curve approach indicates an area under the curve and an AUC of more than 0.82 for all models. The best results were obtained using the XgbTree with an AUC = 0.97 in comparison to other MLA. Our findings demonstrate an excellent ability for ML models to predict the soil-suitability using physico-chemical and phenological parameters. The approach developed to map the soil-suitability is a valuable tool for sustainable agricultural development, and it can play an effective role in ensuring food security and conducting a land agriculture assessment.

Funder

King Saud University

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3