Smart Farm Irrigation: Model Predictive Control for Economic Optimal Irrigation in Agriculture

Author:

Cáceres GabrielaORCID,Millán PabloORCID,Pereira Mario,Lozano DavidORCID

Abstract

The growth of the global population, together with climate change and water scarcity, has made the shift towards efficient and sustainable agriculture increasingly important. Undoubtedly, the recent development of low-cost IoT-based sensors and actuators offers great opportunities in this direction since these devices can be easily deployed to implement advanced monitoring and irrigation control techniques at a farm scale, saving energy and water and decreasing costs. This paper proposes an economic and periodic predictive controller taking advantage of the irrigation periodicity. The goal of the controller is to find an irrigation technique that optimizes water and energy consumption while ensuring adequate levels of soil moisture for crops, achieving the maximum crop yield. For this purpose, the developed predictive controller makes use of soil moisture data at different depths, and it formulates a constrained optimization problem that considers energy and water costs, crop transpiration, and an accurate dynamical nonlinear model of the water dynamics in the soil, reflecting the reality. This controller strategy is compared with a classical irrigation strategy adopted by a human expert in a specific case study, demonstrating that it is possible to obtain significant reductions in water and energy consumption without compromising crop yields.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference48 articles.

1. Implementing Blockchain Technology in Irrigation Systems That Integrate Photovoltaic Energy Generation Systems

2. Optimal Design of Pressurized Irrigation Networks to Minimize the Operational Cost under Different Management Scenarios

3. Farm to Fork Strategy,2019

4. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions,2019

5. Irrigation management of European greenhouse vegetable crops

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3