A Comparison of the Physiological Traits and Gene Expression of Brassinosteroids Signaling under Drought Conditions in Two Chickpea Cultivars

Author:

Felagari Khatereh1,Bahramnejad Bahman1,Siosemardeh Adel1,Mirzaei Khaled2ORCID,Lei Xiujuan3,Zhang Jian4ORCID

Affiliation:

1. Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj 6617715175, Iran

2. Earth and Life Institute, University of Kurdistan, Sanandaj 6617715175, Iran

3. College of Chinese Medicinal Materials, National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun 130118, China

4. Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China

Abstract

This study aimed to investigate the effects of drought stress at the flowering stage on the physiological and molecular responses of the genes involved in the brassinosteroid pathway of two chickpea cultivars (ILC1799: drought tolerant, and ILC3279: drought sensitive). The drought resulted in significant reductions in chlorophyll a, chlorophyll b, total chlorophyll and carotenoid content in both cultivars, and had significantly lesser effects on the tolerant cultivar, Samin, compared to that of ILC3279. However, the relative water content, the osmotic potential and the cell membrane stability were less affected by drought in both cultivars. The proline content and peroxidase activity increased significantly under drought stress in both cultivars, with a higher amount in Samin (ILC1799). Members of the BES1 family positively mediate brassinosteroid signaling and play an important role in regulating plant stress responses. The expression of these genes was analyzed in chickpea cultivars under drought. Further, a genome-wide analysis of BES1 genes in the chickpea genome was conducted. Six CaBES1 genes were identified in total, and their phylogenetic tree, gene structures, and conserved motifs were determined. CaBES1 gene expression patterns were analyzed using a transcription database and quantitative real-time PCR analysis. The results revealed that the expression of CaBES1 genes are different in response to various plant stresses. The expression levels of CaBES1.1, CaBES1.2, CaNAC72 and CaRD26 genes were measured by using qRT-PCR. The relative expression of CaBES1.2 in the drought conditions was significantly downregulated. In contrast to CaBES1.1 and CaBES1.2, the expression of CaRD26 and CaNAC72 showed a significant increase under drought stress. The expression of CaRD26 and CaNAC72 genes was significantly higher in the Samin cultivar compared to that of ILC3279 cultivars.

Funder

Jilin Agricultural University high-level researcher

University of Kurdistan

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3