Design and Validation of Automated Sensor-Based Artificial Ripening System Combined with Ultrasound Pretreatment for Date Fruits

Author:

Mohammed MagedORCID,Alqahtani Nashi K.

Abstract

Climate change affects fruit crops’ growth and development by delaying fruit ripening, reducing color development, and lowering fruit quality and yield. The irregular date palm fruit ripening in the past few years is assumed to be related to climatic change. The current study aimed to design and validate an automated sensor-based artificial ripening system (S-BARS) combined with ultrasound pretreatment for artificial ripening date fruits cv. Khalas. A sensor-based control system was constructed to allow continuous real-time recording and control over the process variables. The impact of processing variables, i.e., the artificial ripening temperature (ART-temp) and relative humidity (ART-RH) using the designed S-BARS combined with ultrasound pretreatment variables, i.e., time (USP-Time) and temperature (USP-Temp) on the required time for fruit ripening (RT), the percentage of ripened fruits (PORF), the percentage of damaged fruits (PODF), and the electrical energy consumption (EEC) were investigated. The quadratic predictive models were developed using the Box–Behnken Design (B-BD) to predict the RT, PORF, PODF, and EEC experimentally via Response Surface Methodology(RSM). Design Expert software (Version 13) was used for modeling and graphically analyzing the acquired data. The artificial ripening parameter values were determined by solving the regression equations and analyzing the 3D response surface plots. All parameters were simultaneously optimized by RSM using the desirability function. The Mean Absolute Percentage Error (MAPE) and the Root Mean Square Error (RMSE) between the predicted and actual experimental values were used to evaluate the developed models. The physicochemical properties of the ripened fruit were assessed under the optimization criteria. The results indicated that the pretreated unripe date fruits with 40 kHz ultrasound frequency, 110 W power, and USP-Temp of 32.49 °C for 32.03 min USP-Time under 60 °C ART-Temp and 59.98% ART-RH achieved the best results. The designed S-BARS precisely controlled the temperature and relative humidity at the target setpoints. The ultrasound pretreatment improved the color and density of the artificially ripened date fruits, decreased the RT and EEC, and increased the PORF without negatively affecting the studied fruit quality attributes. The developed models could effectively predict the RT, PORF, PODF, and EEC. The designed S-BARS combined with ultrasound pretreatment is an efficient approach for high-quality ripening date fruits.

Funder

Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3