Interactive Effects of Tillage Systems and Nitrogen Fertilizer Rates on the Performance of Mustard-Boro-aman Rice Cropping Systems under Conservation Agriculture Practices

Author:

Salahin Nazmus,Alam Md. KhairulORCID,Shil Nirmal Chandra,Mondol Abu Taher Mohammad Anwarul Islam,Alam Md. Jahangir,Kobeasy Mohamed I.,Gaber AhmedORCID,Ahmed SharifORCID

Abstract

In intensive crop production systems, sustainable agricultural development strives to find the balance between productivity and environmental impact. To reduce the N fertilizer-associated environmental risks of intensive cropping, sound agronomic and environmentally acceptable management practices are urgently needed. To attain high yields, improve soil health, and ensure economic return and N usage efficiency in conservation-based intensive agriculture, N management must be optimized, which has not yet been studied systematically in the mustard-boro rice-aman rice cropping pattern. During 2016/17, 2017/18, and 2018/19 cropping seasons in Bangladesh, cropping system experiments were conducted to investigate the interactive effects of tillage practices and nitrogen fertilizer rates on soil characteristics, crop productivity, and profitability under conservation agriculture (CA) systems. The trial featured two tillage systems: (i) conventional tillage (CT) and (ii) strip-tillage (ST). It also used three doses of N fertilizer: N1: 75% of the recommended N fertilizer dose (RND); N2: 100% of the RND; and N3: 125% of the RND. Each crop’s experiment was set up in a split-plot design with three replications, with the main plot assigned tillage practices and the sub-plot assigned nitrogen fertilizer rates. For rice, neither the tillage systems nor the interactions between the tillage systems and N levels affected any of the growth parameters, yield, and yield components, but the N levels did. Across the tillage systems, the rice grain and straw yield were similar for the N levels of 100% RND and 125% RND, which were significantly higher than the N level of 75% RND. In mustard, the highest seed yield was recorded from the tillage system ST, with an N level of 125% RND, which was at par with the tillage system ST with 100% RND and CT with 125% RND. The highest system rice equivalent yield (SREY, 14.9 to 15.8 t ha−1) was recorded from the tillage system ST, with an N level of 125% RND, which was at par with the same tillage system with an N level of 100% RND. The soil penetration and bulk density (BD) were higher for the CT than the ST, but soil organic matter (OM), total nitrogen (TN), phosphorus (P), potassium (K), and boron (B) content were higher for the tillage system ST than the CT. Across N levels, the tillage system CT had a 2–4% higher production cost than the ST. Total production cost increased as N levels increased across all tillage systems. The tillage system ST with an N level of 125% RND had the highest system gross return and net profit, which was at par with the same tillage system with 100% RND. This study suggested that farmers should apply slightly higher N for the mustard-boro-aman rice systems for the first couple of years when commencing CA; however, after a few years of consistent CA practice, the N rate may be reduced.

Funder

Taif University

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3