Predicting the Potential Geographic Distribution of Invasive Freshwater Apple Snail Pomacea canaliculate (Lamarck, 1819) under Climate Change Based on Biomod2

Author:

Wang Tao1,Zhang Tingjia1,An Weibin2,Wang Zailing1ORCID,Li Chuanren1

Affiliation:

1. Hubei Engineering Research Center for Pest Forewarning and Management, Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China

2. Agriculture and Rural Affairs Bureau of Zengdu, Suizhou 441300, China

Abstract

Pomacea canaliculata is widely distributed in the Chinese provinces south of the Yangtze River, causing serious damage to aquatic ecosystems, rice cultivation, and human health. Predicting the potential geographic distributions (PGDs) of P. canaliculata under current and future climate conditions in China is crucial for developing effective early warning measures and facilitating long-term monitoring. In this study, we screened various species distribution models (SDMs), including CTA, GBM, GAM, RF, and XGBOOST, to construct an ensemble model (EM) and then predict suitable habitats for P. canaliculata under current and future climate scenarios (SSP1-26, SSP2-45, SSP3-70, SSP5-85). The EM (AUC = 0.99, TSS = 0.96) yielded predictions that were more precise than those from the individual models. The Annual Mean Temperature (Bio1) and Precipitation of the Warmest Quarter (Bio18) are the most significant environmental variables affecting the PGDs of P. canaliculata. Under current climate conditions, the highly suitable habitats for P. canaliculata are primarily located south of the Yangtze River, collectively accounting for 17.66% of the nation’s total area. Unsuitable habitats predominate in higher-latitude regions, collectively covering 66.79% of China’s total land area. In future climate scenarios, the total number of suitable habitats for P. canaliculata is projected to expand into higher latitude regions, especially under SSP3-70 and SSP5-85 climate conditions. The 4.1 °C contour of Bio1 and the 366 mm contour of Bio18 determine the northernmost geographical distribution of P. canaliculata. Climate change is likely to increase the risk of P. canaliculata expanding into higher latitudes.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3