Genetic Basis and Exploration of Major Expressed QTL qLA2-3 Underlying Leaf Angle in Maize

Author:

He Yonghui12ORCID,Wang Chenxi1,Hu Xueyou13,Han Youle1,Lu Feng1,Liu Huanhuan12,Zhang Xuecai4,Yin Zhitong12ORCID

Affiliation:

1. Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China

2. Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China

3. Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China

4. International Maize and Wheat Improvement Center (CIMMYT), Mexico City 06600, Mexico

Abstract

Leaf angle (LA) is closely related to plant architecture, photosynthesis and density tolerance in maize. In the current study, we used a recombinant inbred line population constructed by two maize-inbred lines to detect quantitative trait loci (QTLs) controlling LA. Based on the average LA in three environments, 13 QTLs were detected, with the logarithm of odds ranging from 2.7 to 7.21, and the phenotypic variation explained by a single QTL ranged from 3.93% to 12.64%. A stable QTL, qLA2-3, on chromosome 2 was detected and was considered to be the major QTL controlling the LA. On the basis of verifying the genetic effect of qLA2-3, a fine map was used to narrow the candidate interval, and finally, the target segment was located at a physical distance of approximately 338.46 kb (B73 RefGen_v4 version), containing 16 genes. Re-sequencing and transcriptome results revealed that five candidate genes may be involved in the regulation of LA. The results enrich the information for molecular marker-assisted selection of maize LA and provide genetic resources for the breeding of dense planting varieties.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Jiangsu Government

Natural Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3