Comparative Omics-Based Identification and Expression Analysis of a Two-Component System in Vigna radiata in Drought Stress

Author:

Afzal Muhammad Amin1,Azeem Farrukh1ORCID,Afzal Shumaila2,Afzal Naila1,Rizwan Muhammad3ORCID,Seo Hyojin4,Shah Asad Ali1,Nawaz Muhammad Amjad5ORCID

Affiliation:

1. Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan

2. Department of Microbiology, University of Agricultural, Faisalabad 38000, Pakistan

3. Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan

4. Korean Soybean Research Institute, 950 Worasan-ro, Jinju 52840, Republic of Korea

5. Advanced Engineering School (Agrobiotek), Tomsk State University, Lenin Ave, 36, 63050 Tomsk, Russia

Abstract

Two-component system (TCS) genes regulate a wide range of biological activities in prokaryotes and eukaryotes, including plants. TCS plays an important role in cellular responses to external stimuli, such as biotic and abiotic factors. In plants, this system supports cell division, leaf senescence, stress response, chloroplast division, and nutrient signaling. There are three kinds of proteins responsible for the appropriate functioning of the TCS system: histidine kinases (HKs), histidine phosphotransfer proteins (HPs), and response regulators (RRs). The results of the current study revealed that Vigna radiata has 54 genes encoding potential TCS proteins, which were divided into three subgroups: 18 HKs, 9 HPs (seven true and two pseudos), and 27 RRs (8 type-A, 8 type-B, 3 type-C, and 8 PRRS). The anticipated TCS genes were widely dispersed across all eleven chromosomes and had family-specific intron/exon structures. After investigating TCS genes in a variety of plant species, we determined that Vigna HK (L)s, HPs, and RRs have closer evolutionary relationships with other legume genes. Gene duplication, including segmental and tandem types, is the most frequent source of gene family expansion. Multiple stress-related cis-elements were predicted in the promoter sequences of the VrTCS genes. RNA-seq data analysis demonstrated that VrTCS genes were expressed in clusters of upregulated and downregulated groups in response to drought stress. Moreover, these clusters were differentially expressed as early or late responses to drought stress. Real-time qPCR showed that VrHK2, VrHK3, VrPHYE, VrHP4.1, VrRR5.2, and VrRR10 genes were upregulated, while VrRR3 and VrHP6.1 genes were downregulated in response to drought stress. The current study highlights the architecture of V. radiata TCS and provides a robust framework for subsequent functional evaluation.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3