Determination of the Angle of Repose and Coefficient of Rolling Friction for Wood Pellets

Author:

Madrid Marcos A.,Fuentes José M.ORCID,Ayuga FranciscoORCID,Gallego EutiquioORCID

Abstract

The determination of the angle of repose for granular materials is indispensable for their handling and the design of containers and technological processing equipment. On the other hand, computational simulations have become an essential tool to understand the micro-behavior of the granular material and to relate it with the macro-behavior. The experimental determination of the angle of repose has a fundamental role when defining the required parameters to perform realistic simulations. However, there is a lack of a standard that allows the reproducibility of the experiments when using granular materials of equivalent spherical radius greater than 2 mm, such as corn, soybeans, wheat and PLA pellets, among others. In particular, a product of growing importance in the global strategy of decarbonization of the economy is biomass pellets, whose handling operations are one of the main components for the total cost of pellets supplied to the final user. In the present work, with the aim of determining the rolling friction coefficient, the variations in the angle of repose with the drop height for biomass pellets were studied both experimentally and with simulations, and an optimal procedure for its determination was found. Then, a calibration of the coefficient of rolling friction was performed through computational simulations using the discrete element method. The accuracy of the model under different configurations was checked.

Funder

Agencia Estatal de Investigación

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference52 articles.

1. Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials;Duran,2012

2. Statics and Kinematics of Granular Materials

3. Production and utilization of fuel pellets from biomass: A review

4. A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment. Updated Bioeconomy Strategy,2018

5. Biomass to Renewable Energy Processes;Cheng,2017

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3