Insights into the Interaction between the Biocontrol Agent Bacillus amyloliquefaciens QST 713, the Pathogen Monilinia fructicola and Peach Fruit

Author:

Tsalgatidou Polina C.1ORCID,Papageorgiou Anastasia2ORCID,Boutsika Anastasia3ORCID,Chatzidimopoulos Michael4ORCID,Delis Costas1ORCID,Tsitsigiannis Dimitrios I.2ORCID,Paplomatas Epaminondas2ORCID,Zambounis Antonios3

Affiliation:

1. Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece

2. Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece

3. Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, 57001 Thessaloniki, Greece

4. Department of Agriculture, International Hellenic University, 57400 Thessaloniki, Greece

Abstract

Brown rot disease caused by Monilinia fructicola is one of the most important peach fruit threats in the world. The use of biological control agents (BCAs), instead of synthetic fungicides, to successfully inhibit postharvest disease development is a challenge in sustainable and efficient crop management. The commercially available BCA Bacillus amyloliquefaciens QST 713 (formerly Bacillus subtilis QST713) is able to inhibit a variety of fungal pathogens and suppress several plant diseases. Our results showed that this BCA inhibited mycelial growth in vitro, and was able to suppress the disease’s severity in peach fruits via delaying and reducing brown rot symptoms. A transcriptomic analysis of fruits during their pre-treatment with this biocontrol agent following M. fructicola challenge revealed a significant upregulation of specific differentially expressed genes (DEGs) at 48 h after inoculation (HAI). These genes are related to the activation of several transcriptional factors, such as members of the WRKY and NAC families, and receptors that are involved in pathogen recognition and signaling transduction (e.g., LRR-RLKs). Furthermore, the inhibition of M. fructicola by this biocontrol agent was confirmed by analyzing the expression profiles of specific fungal genes, which highlighted the direct antimicrobial impact of this bacterial strain against the fungus. Hence, these findings clearly suggest that B. amyloliquefaciens QST 713 is an efficient BCA against brown rot disease, which can directly inhibit M. fructicola and improve peach fruit tolerance.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3