A Method of Grasping Detection for Kiwifruit Harvesting Robot Based on Deep Learning

Author:

Ma Li,He Zhi,Zhu Yutao,Jia Liangsheng,Wang Yinchu,Ding XintingORCID,Cui Yongjie

Abstract

Kiwifruit harvesting with robotics can be troublesome due to the clustering feature. The gripper of the end effector will easily cause unstable fruit grasping, or the bending and separation action will interfere with the neighboring fruit because of an inappropriate grasping angle, which will further affect the success rate. Therefore, predicting the correct grasping angle for each fruit can guide the gripper to safely approach, grasp, bend and separate the fruit. To improve the grasping rate and harvesting success rate, this study proposed a grasping detection method for a kiwifruit harvesting robot based on the GG-CNN2. Based on the vertical downward growth characteristics of kiwifruit, the grasping configuration of the manipulator was defined. The clustered kiwifruit was mainly divided into single fruit, linear cluster, and other cluster, and the grasping dataset included depth images, color images, and grasping labels. The GG-CNN2 was improved based on focal loss to prevent the algorithm from generating the optimal grasping configuration in the background or at the edge of the fruit. The performance test of the grasping detection network and the verification test of robotic picking were carried out in orchards. The results showed that the number of parameters of GG-CNN2 was 66.7 k, the average image calculation speed was 58 ms, and the average grasping detection accuracy was 76.0%, which ensures the grasping detection can run in real time. The verification test results indicated that the manipulator combined with the position information provided by the target detection network YOLO v4 and the grasping angle provided by the grasping detection network GG-CNN2 could achieve a harvesting success rate of 88.7% and a fruit drop rate of 4.8%; the average picking time was 6.5 s. Compared with the method in which the target detection network only provides fruit position information, this method presented the advantages of harvesting rate and fruit drop rate when harvesting linear clusters, especially other cluster, and the picking time was slightly increased. Therefore, the grasping detection method proposed in this study is suitable for near-neighbor multi-kiwifruit picking, and it can improve the success rate of robotic harvesting.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference34 articles.

1. Characteristics and pro-health properties of mini kiwi (Actinidia arguta);Baranowska;Hortic. Environ. Biotechnol.,2019

2. Production of Kiwi (Fruit) by Countries (2022, August 10). UN Food and Agriculture Organization. Available online: https://www.fao.org/faostat/en/#data.

3. Kiwifruit in syrup: Consumer acceptance, purchase intention and influence of processing and storage time on physicochemical and sensory characteristics;Food Bioprocess Technol.,2015

4. Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms;Williams;Biosyst. Eng.,2019

5. Improvements to and large-scale evaluation of a robotic kiwifruit harvester;Williams;J. Field Robot.,2020

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3