Management Strategy of Slow-Release Nitrogen Fertilizers for Direct-Sown Cotton after Wheat Harvest

Author:

Lu Yi1,Xu Jingli1,Liu Zhenyu1ORCID,Chen Yuan1,Zhang Xiang1,Chen Dehua1

Affiliation:

1. Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China

Abstract

The direct-sown cotton after wheat harvest (DSCWH) cropping system has attracted wide attention due to reduced labor inputs compared to transplanting. However, the management strategy of slow-release nitrogen is unclear in such a system. This study aims to investigate the impact of different timings and dosages of slow-release nitrogen fertilizer on the yield, biomass accumulation and distribution, and nitrogen absorption and nitrogen utilization in the DSCWH cropping system. This study was investigated at the experimental farm of Yangzhou University, China in 2020 and 2021, with the short-season cotton variety “Zhongmian 50” used as experimental material. Three dosages of the slow-release nitrogen fertilizer (45 kg·ha−1, 90 kg·ha−1, and 135 kg·ha−1) were applied at two stages of growth (two-leaf and four-leaf). The results showed that applying a 90 kg·ha−1 dosage at the two-leaf stage achieved the highest yield, which was increased by 12.6% compared to the no-fertilization control. Applying 90 kg·ha−1 of the slow-release nitrogen at the two-leaf stage promoted biomass accumulation, especially in reproductive organs, and this increase in biomass of reproductive organs was attributed to optimum nitrogen accumulation in reproductive organs (80~140 kg·ha−1). In addition, when 90 kg·ha−1 was applied at the two-leaf stage, there was a significant enhancement in nitrogen recovery efficiency (NRE), nitrogen agronomic use efficiency (NAE), and nitrogen physiological efficiency (NPE), with increases of 7.2% to 13.0%, 5.7% to 5.8%, and 5.6% to 6.5%, respectively. These results revealed that applying slow-release nitrogen fertilizer with the optimal dosage at the seedling stage could significantly enhance nitrogen use efficiency, nitrogen accumulation and partitioning, and biomass accumulation and distribution, which ultimately resulted in a higher lint yield in DSCWH. Therefore, to optimize yield and NUE, 90 kg·ha−1 slow-release nitrogen applied at the two-leaf stage would be recommended in the direct-sown cotton after wheat harvest cropping system.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3