Recycling Phosphorus from Agricultural Streams: Grey and Green Solutions

Author:

Auteri NicolòORCID,Saiano FilippoORCID,Scalenghe RiccardoORCID

Abstract

Many intensively farmed soils show high phosphorus (P) contents compared to the thresholds required for agricultural production; 0.084 Mt of P year−1 is leaving the European terrestrial system. This paper focuses mainly on non-point flows of P and provides an overview of the most promising and sustainable solutions for P recycling, centred on waste materials from agriculture. Given the global shortage of the primary resource of P, its management is critical for its efficient use. Nowadays, wastage and loss at every stage of the P cycle raise concerns about future supplies and especially about the resulting environmental problems, such as the eutrophication of surface water bodies and the reduction of biodiversity. Recovering P costs more than EUR 640 per tonne depending on the type of technique used. The opportunity for P recovery with green and sustainable technology is, therefore, a great challenge for the next years. Waste materials or by-products of agricultural processing have been considered ecologically safe, low-cost, and highly selective with high pollutant adsorption capacities, which would enable sustainable P recovery, both environmentally and economically. A realistic threshold for considering the reuse of P sustainably at the farm level is EUR 320 per tonne.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3