Abstract
Estimation of crop biophysical and biochemical characteristics is the key element for crop growth monitoring with remote sensing. With the application of unmanned aerial vehicles (UAV) as a remote sensing platform worldwide, it has become important to develop general estimation models, which can interpret remote sensing data of crops by different sensors and in different agroclimatic regions into comprehensible agronomy parameters. Leaf chlorophyll content (LCC), which can be measured as a soil plant analysis development (SPAD) value using a SPAD-502 Chlorophyll Meter, is one of the important parameters that are closely related to plant production. This study compared the estimation of rice (Oryza sativa L.) LCC in two different regions (Ningxia and Shanghai) using UAV-based spectral images. For Ningxia, images of rice plots with different nitrogen and biochar application rates were acquired by a 125-band hyperspectral camera from 2016 to 2017, and a total of 180 samples of rice LCC were recorded. For Shanghai, images of rice plots with different nitrogen application rates, straw returning, and crop rotation systems were acquired by a 5-band multispectral camera from 2017 to 2018, and a total of 228 samples of rice LCC were recorded. The spectral features of LCC in each study area were analyzed and the results showed that the rice LCC in both regions had significant correlations with the reflectance at the green, red, and red-edge bands and 8 vegetation indices such as the normalized difference vegetation index (NDVI). The estimation models of LCC were built using the partial least squares regression (PLSR), support vector regression (SVR), and artificial neural network (ANN) methods. The PLSR models tended to be more stable and accurate than the SVR and ANN models when applied in different regions with R2 values higher than 0.7 through different validations. The results demonstrated that the rice canopy LCC in different regions, cultivars, and different types of sensor-based data shared similar spectral features and could be estimated by general models. The general models can be implied to a wider geographic extent to accurately quantify rice LCC, which is helpful for growth assessment and production forecasts.
Funder
Shanghai Agriculture Applied Technology Development Program, China
Subject
Agronomy and Crop Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献