Characteristics of Dissolved Organic Matter as Affected by Decomposition of Different Organic Materials in Alpine Wetland

Author:

Song Yueguang12,Li Meng1,Wang Yifei1,Yang Weishan3

Affiliation:

1. Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China

2. School of National Safety and Emergency Management, Beijing Normal University, Beijing 100875, China

3. Center for Ecological and Environmental Accounting, Chinese Academy of Environmental Planning, Beijing 100041, China

Abstract

Dissolved organic matter (DOM) plays a significant role in the nutrient supply, energy flow, and pollutant transportation in the wetland ecosystem. However, little is known about the effect of the decomposition of different organic materials in alpine wetland water on the DOM characteristics. By conducting a 90-day decomposition experiment with the addition of different organic materials (peat soil, yak manure, and plant litter) alone or their combinations into alpine wetland water, we characterized the water DOM using three-dimension excitation-emission matrix spectroscopy. The results showed that the decomposition of organic materials significantly affected the chemical properties, sources, humification degree, and composition of the water DOM. The decomposition increased dissolved organic carbon and dissolved total nitrogen in the water. For most of the water samples, a fluorescence index ranging from 1.4 to 1.7 and a biological index of less than 0.8 may indicate that both autochthonous and allochthonous sources contributed to the water DOM, which may primarily rely on allochthonous sources. UVA (37.55–46.81% of total fluorescent components) and UVC fulvic-like substances (29.91–35.53% of total fluorescent components) dominated the water DOM compositions. Among the treatments, additions of peat soil and yak manure led to the highest and the lowest humification degree of the water DOM, respectively. For the treatment of the combination decomposition of all three organic materials, the yak manure may stimulate microbial activity and facilitate the decomposition of plant litter and peat soil and, therefore, boost the humic-like substances in the water DOM. These findings may help the development of wetland biomass management with the objective of maintaining alpine wetland ecosystem services.

Funder

Fundamental Research Funds of Chinese Academy of Forestry

National Key Research and Development Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3