The Molecular Composition of Humic Acids in Permafrost Peats in the European Arctic as Paleorecord of the Environmental Conditions of the Holocene

Author:

Vasilevich RomanORCID,Lodygin EvgenyORCID,Abakumov EvgenyORCID

Abstract

The purpose of our research is focused on examination of the transformation regularities of molecular composition of humic acids (HAs) in the hummocky frozen peatlands of the European Arctic as a marker of climatic changes in the Holocene, and assessment of the stabilization of soil organic matter under the conditions of modern climatic warming. Histosols located in the two subzones of the European Arctic served as the research subjects. This territory is actively used for reindeer breeding, which is a vital agricultural branch in the Far North of the Russian Federation. The data obtained reveal the main trends in the formation of HAs from Arctic peatlands under different environmental conditions. Modern peat sediments (top layers) in the middle and late Holocene period formed out of bryophyte residues and contained HAs with long-chain carbohydrate and paraffin structures in their composition. These structures enlarged the dynamic radii of HA molecules, and, thus, caused high average molecular weight values. The more favorable climatic conditions of the early Holocene (the Atlantic optimum) defined the botanical composition of peat, which was dominated by tree and sedge communities with high contents of lignin components and, as a consequence, a larger share of aromatic fragments, characterized by thermo-biodynamic resistance in HAs of horizons in the lower and central profile parts. The molecules of HAs are an archive of paleoclimatic records. The Subboreal and Subatlantic climatic conditions determined the specifics of vegetation precursors and, as a result, the molecular structure of HAs in seasonally thawed layers, with a predominance of long-chain aliphatic fragments. The conversion of HAs from Histosols led to an increase in the proportion of carbon in branched and short-chain paraffinic structures with their subsequent cyclization and aromatization. The results of this process are most clearly manifested in layers formed during the Holocene I and II climatic optima. Higher biologically active temperatures of the seasonally thawed layer of soils at bare spots (without vegetation) determined the accumulation of thermodynamically more stable HA molecules with a high content of aromatic fragments. This contributed to both the stabilization of the SOM and the conservation of peatlands in general.

Funder

Russian Foundation for Basic Research

Federal budget of Russia, within the framework of the research topic of the Institute of Biology

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3