Residual Effect of Bentonite-Humic Acid Amendment on Soil Health and Crop Performance 4–5 Years after Initial Application in a Dryland Ecosystem

Author:

Ma BinORCID,Bao Yangmei,Ma BaoluoORCID,McLaughlin Neil B.,Li Ming,Liu Jinghui

Abstract

Degraded soils (including salinized, eroded, and low organic matter) resulting from natural and human effects are universal in arid and semi-arid regions all over the world. Bentonite and humic acid (BHA) are increasingly being tested to remediate these degraded lands, with potential benefits on crop production and soil health. A field study was conducted to quantify the effects of BHA application at six rates (0, 6, 12, 18, 24, and 30 Mg ha−1) on (i) dynamic changes in soil properties and (ii) oat crop productivity parameters in a dryland farming ecosystem. The specific objective of this paper was to determine the residual effects four to five years after a one-time BHA application on soil health and crop performance. The findings demonstrated that with the increasing rates of one-time BHA application, soil profile water storage displayed a piecewise linear plus plateau increase, whereas soil electrical conductivity, pH, and bulk density were all reduced significantly (p < 0.05) in the 0–20 cm and 20–60 cm layers. The improved soil environments gave rise to an increased activity of soil enzymes urease, invertase, and catalase that, respectively, reached peak values of 97%, 37%, and 32% of the control at the rates of 18 to 24 Mg BHA ha−1. In turn, this boosted soil nutrient turnover, leading to a 40% higher soil available P. Compared with the control treatment, application of BHA at the estimated optimum rate (roughly 24 Mg ha−1) increased grain yield by 20%, protein yield by 62%, water use efficiency by 41%, and partial factor productivity of N by 20%. The results of this study indicated for the first time that a one-time BHA application would be a new and effective strategy to combat land degradation and drought, and promote a sustainable soil micro-ecological environment in dryland agroecosystems under a varying climate scenario.

Funder

Key R&D Program of Ningxia Hui Autonomous Region

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Potential of Soil Conditioners to Mitigate Deficit Irrigation Impacts on Agricultural Crops: A Review;Water Resources Management;2024-02-28

2. IMPROVEMENT OF SOIL RESILIENCE TO ENVIRONMENTAL CHALLENGES USING DIFFERENT FOOD WASTES AS SOIL AMENDMENTS;22nd SGEM International Multidisciplinary Scientific GeoConference Proceedings 2022, Energy and Clean Technologies, VOL 22, ISSUE 4.2;2022-12-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3