Deficit Irrigation as an Effective Way to Increase Potato Water Use Efficiency in Northern China: A Meta-Analysis

Author:

Niu Yining1,Zhang Ke12,Khan Khuram Shehzad13,Fudjoe Setor Kwami13,Li Lingling13ORCID,Wang Linlin13ORCID,Luo Zhuzhu12

Affiliation:

1. State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China

2. College of Resources and Environment Science, Gansu Agricultural University, Lanzhou 730070, China

3. College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China

Abstract

Water scarcity poses a significant threat to the sustainable production of crops in Northern China. Despite this, the effect of water management practices, such as deficit irrigation, on the yield and WUE of potatoes has been rarely explored. Based on the meta-analysis of field experiment data, this study evaluated the influence of deficit irrigation on potato yield, evapotranspiration (ET), water use efficiency (WUE) and irrigation water use efficiency (IWUE) under variable soil types, water-saving ratio, irrigation methods, soil organic carbon (SOC) content, and fertilizer rate in Northern China. Here, we determined that potato WUE and IWUE were significantly increased by 10.0 and 31.6%, respectively, under deficit irrigation, while ET was significantly decreased by 26.3% compared to full irrigation. Conclusively, deficit irrigation significantly reduced potato yields by 16.4% compared to full irrigation. Furthermore, SOC content played a vital role in improving the WUE and alleviating potato yield losses under deficit irrigation. Our study suggested that maximum WUE with lower potato yield losses under deficit irrigation can be achieved in the Central Plains region of China or in yellow loam soil, brown soil, and meadow soil under alternate root-zone irrigation when the water-saving ratio was less than 45% and fertilizer application rates were 300 kg N ha−1, >240 kg P2O5 ha−1, and 181–300 kg K2O ha−1. Overall, these findings highlight the need for a comprehensive understanding of various agricultural management practices and local environmental conditions to optimize the benefits of deficit irrigation in potato-growing regions across Northern China.

Funder

Young Instructor Fund Project of Gansu Agricultural University

State Key Laboratory of Arid land Crop Science, Gansu Agricultural University

National Key R&D Program of China

National Natural Science Foundation of China

Education Science and Technology Innovation Special Project of Gansu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3