Potassium Application Alleviated Negative Effects of Soil Waterlogging Stress on Photosynthesis and Dry Biomass in Cotton

Author:

Huang Li12,Li Jinxiang1,Yang Pan12,Zeng Xianghua1,Chen Yinyi1,Wang Haimiao123ORCID

Affiliation:

1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China

2. Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin 541006, China

3. College of Life Sciences, Guangxi Normal University, Guilin 541006, China

Abstract

Soil waterlogging is one of the most serious abiotic stresses on plant growth and crop productivity. In this study, two potassium application levels (0 and 150 kg K2O hm−2) with three types of soil waterlogging treatments (0 d, 3 d and 6 d) were established during cotton flowering and boll-forming stages. The results showed that soil waterlogging markedly reduced RWC (relative water content), gas exchange parameters and cotton biomass. However, potassium application considerably improved the aforementioned parameters. Specifically, 3 d soil waterlogging with potassium increased Pn (net photosynthetic rate), Gs (stomatal conductance), Ci (intercellular CO2 concentration) and Tr (transpiration rate) by 4.55%, 27.27%, 5.74% and 3.82%, respectively, compared with 3 d soil waterlogging under no potassium, while the abscission rate reduced by 2.96%. Additionally, the number of bolls and fruit nodes under 6 d soil waterlogging with potassium increased by 16.17% and 4.38%, compared with 6 d soil waterlogging under no potassium. Therefore, it was concluded that regardless of 3 d or 6 d soil waterlogging, potassium application alleviated the negative effects of waterlogging by regulating the plant water status, photosynthetic capacity and plant growth in cotton. These results are expected to provide theoretical references and practical applications for cotton production to mitigate the damage of soil waterlogging.

Funder

Natural Science Foundation of Guangxi

Sustainable Development Innovation and Key Program of Guangxi Normal University

Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin

Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference51 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3