Assessing the Biofortification of Wheat Plants by Combining a Plant Growth-Promoting Rhizobacterium (PGPR) and Polymeric Fe-Nanoparticles: Allies or Enemies?

Author:

Merinero ManuelORCID,Alcudia AnaORCID,Begines BelénORCID,Martínez Guillermo,Martín-Valero María JesúsORCID,Pérez-Romero Jesús AlbertoORCID,Mateos-Naranjo EnriqueORCID,Redondo-Gómez SusanaORCID,Navarro-Torre SalvadoraORCID,Torres YadirORCID,Merchán Francisco,Rodríguez-Llorente Ignacio D.ORCID,Pajuelo EloísaORCID

Abstract

Biofortification has been widely used to increase mineral nutrients in staple foods, such as wheat (Triticum aestivum). In this study, a new approach has been used by analyzing the effect of inoculation with a plant growth-promoting rhizobacterium (PGPR), namely, Bacillus aryabhattai RSO25 and the addition of 1% (v/v) of organometallic Fe-containing polymeric nanoparticles (FeNPs) alone and in combination. Previously, the minimal inhibitory concentration of FeNPs for the bacterium was determined in order not to inhibit bacterial growth. All treatments had minor effects on seed germination and plant survival. Considering the physiology of plants, several photosynthetic parameters were significantly improved in individual treatments with FeNPs or the bacterium, particularly the efficiency of the photosystem II and the electron transport rate, which is indicative of a better photosynthetic performance. However, at the end of the experiment, a significant effect on final plant growth was not observed in shoots or in roots. When using FeNPs alone, earlier spike outgrow was observed and the final number of spikes increased by 20%. Concerning biofortification, FeNPs increased the concentration of Fe in spikes by 35%. In fact, the total amount of Fe per plant base rose to 215% with regard to the control. Besides, several side effects, such as increased Ca and decreased Na and Zn in spikes, were observed. Furthermore, the treatment with only bacteria decreased Na and Fe accumulation in grains, indicating its inconvenience. On its side, the combined treatment led to intermediate Fe accumulation in spikes, since an antagonist effect between RSO25 and FeNPs was observed. For this reason, the combined treatment was discouraged. In conclusion, of the three treatments tested, FeNPs alone is recommended for achieving efficient Fe biofortification in wheat.

Funder

Ministry of Science and Innovation of Spain

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference72 articles.

1. The global challenge of hidden hunger: perspectives from the field

2. Hidden hunger in the Developed World. In RTGN; Chapter 3; p. 40–50https://www.nutri-facts.org/content/dam/nutrifacts/media/media-books/RTGN_chapter_03.pdf

3. Review on iron and its importance for human health;Abbaspour;J. Res. Med. Sci.,2014

4. The global burden of chronic and hidden hunger: Trends and determinants

5. A Bibliometric Analysis on Land Degradation: Current Status, Development, and Future Directions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3