Evaluation of the Intra- and Interspecific Development of Different Accessions of Silphium perfoliatum L. and Silphium integrifolium Michx.

Author:

Greve Martin1,Korte Christoph Anton Conrad1,Entrup Johanna1,Altrogge Hanna1,Bischoff Philip2,Elfers Julian1,Wever Christian3,Pude Ralf1ORCID

Affiliation:

1. Institute of Crop Science and Resource Conservation (INRES), Renewable Resources, University of Bonn, Klein-Altendorf 2, 53359 Rheinbach, Germany

2. Institute of Developmental and Molecular Biology of Plants, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany

3. Department Biology, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany

Abstract

For higher sustainability in biomass production the use of new perennial species can lead to sustainable progress in the energy production and manufacturing industry. During the last decades, two different species of Silphium were discussed for biomass production. However, some questions regarding their cultivation and different uses are still to be answered. In this study, two accessions of Silphium perfoliatum L. and Silphium integrifolium Michx. were investigated during the year of establishment, and the first generative year for the phenotypic characteristics and suitability for cultivation, under Central European field conditions. Intra- and interspecific comparisons were made with special attention to their growth kinetics. While cup plant (S. perfoliatum) is well known as a potential biomass crop in Europe, silflower (S. integrifolium) is still unknown. In intraspecific comparison, S. integrifolium shows a more uniform development than S perfoliatum. In parallel, the development of S. perfoliatum accessions is temporally shifted, so that the S. perfoliatum accessions differ in the length of their phases of generative growth and onset of senescence in comparison to S. integrifolium. To make these results applicable, an improvement proposal was made to the existing BBCH scale for S. perfoliatum. In addition, an adaptation was conducted on S. integrifolium.

Funder

Federal Ministry of Food and Agriculture (“Fachagentur für Nachwachsende Rohstoffe”

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3