Optimizing Row Spacing Increases Stalk Lodging Resistance by Improving Light Distribution in Dense Maize Populations

Author:

Jin Rong12,Li Zhong2,Wang Xinglong1,Liu Fan1,Kong Fanlei1,Liu Qinlin1,Lan Tianqiong1,Feng Dongju1,Yuan Jichao1

Affiliation:

1. Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China

2. Nanchong Academy of Agricultural Sciences, Nanchong 637000, China

Abstract

Dense planting effectively increases maize yield while increasing stalk lodging risk. Appropriate row spacing can improve the maize population structure and stalk lodging resistance, but its physiological ecological mechanisms and interaction with planting density are unclear. Here, a two-year field experiment to determine the joint effects of row spacing and planting density on maize stem characteristics and the quantitative relationship of the light condition within a maize population with stalk lodging resistance indicated that the stalk mechanical strength showed a quadratic function relationship with photosynthetically active radiation (PAR), whereas the lodging rate showed an exponential function relationship with basal light transmittance (LT). Further, the basal LT was significantly positively correlated with basal internode thickness, dry weight per unit stem length (DWUL), mechanical and cortical tissue thickness, and lignin and cellulose contents. Increasing the planting density decreased the basal LT and PAR; correspondingly decreased the basal internode thickness, DWUL, mechanical and cortical tissue thickness, lignin and cellulose contents, and stalk mechanical strength; and increased the lodging rate, while increasing row spacing did the opposite. Thus, optimizing the row spacing enhanced the lodging resistance through LT and PAR improvement of the lower part of the population and further increased the grain yield by optimizing the yield components. The appropriate row spacing varied with the planting density. The proper strategy for high stalk lodging resistance and grain yielding under this experimental condition was 67,500 plants ha−1 density with 60 + 60 cm equal row spacing.

Funder

The State Key Research and Development Program of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3