Describing Lettuce Growth Using Morphological Features Combined with Nonlinear Models

Author:

Li Qinglin,Gao Hongyan,Zhang Xiaodong,Ni Jiheng,Mao Hanping

Abstract

The aim of this study was to describe the sigmoidal growth behaviour of a lettuce canopy using three nonlinear models. Gompertz, Logistic and grey Verhulst growth models were established for the top projected canopy area (TPCA), top projected canopy perimeter (TPCP) and plant height (PH), which were measured by two machine vision views and 3D point clouds data. Satisfactory growth curve fitting was obtained using two evaluation criteria: the coefficient of determination (R2) and the mean absolute percentage error (MAPE). The grey Verhulst models produced a better fit for the growth of TPCA and TPCP, with higher R2 (RTPCA2=0.9097, RTPCP2=0.8536) and lower MAPE (MAPETPCA=0.0284, MAPETPCP=0.0794) values, whereas the Logistic model produced a better fit for changes in PH (RPH2=0.8991, MAPEPH=0.0344). The maximum growth rate point and the beginning and end points of the rapid growth stage were determined by calculating the second and third derivatives of the models, permitting a more detailed description of their sigmoidal behaviour. The initial growth stage was 1–5.5 days, and the rapid growth stage lasted from 5.6 to 26.2 days. After 26.3 days, lettuce entered the senescent stage. These inflections and critical points can be used to gain a better understanding of the growth behaviour of lettuce, thereby helping researchers or agricultural extension agents to promote growth, determine the optimal harvest period and plan commercial production.

Funder

Project of Faculty of Agricultural Equipment of Jiangsu University

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3