Metabolomic Response to Drought Stress in Belosynapsis ciliata (Blume) ‘Qiuhong’

Author:

Li Yongquan,Zhang Bipei,Huang Runsheng,Wen Min,Huang Leying,Su Yiting,Sun Yanjun,Wang Ning,Guo Wei

Abstract

The drought stress responses of plants are complex regulatory mechanisms that include various physiological responses reflected by the global metabolic status. Metabolomics is an effective, analytical, and instrumental technique for informatics/statistics for the acquisition of comprehensive information on metabolites. We investigate the effect of drought stress on a Belosynapsis ciliata cultivar, ‘Qiuhong’ (a drought-tolerant cultivar), using liquid chromatography-mass spectrometry based on a widely targeted metabolomic approach. ‘Qiuhong’ leaves are subjected to 15- and 30-day drought treatments and are then compared to a control group without drought stress and a rehydration group. In total, 290 differentially accumulated metabolites were detected between drought and normal conditions through multivariate statistical analyses, of which 65 metabolites (36 upregulated and 29 downregulated) were highlighted for their significant contribution to drought tolerance, including an anthocyanin (peonidin 3-O-galactoside) that caused the purple-red hue in leaves under drought stress. In addition, we found that two significantly altered pathways (citrate cycle and purine metabolism) were related to enhanced drought tolerance in plants. Notably, the synthesis of three compounds (p-coumaroyl putrescine, apigenin 6-C-glucoside, and β-nicotinamide mononucleotide) was specifically induced in the drought-treated ‘Qiuhong’, indicating their critical roles in drought resistance. Our results provide a foundation for further research on drought-resistant mechanisms in B. ciliata.

Funder

Shenzhen Municipal Science and Technology Project

Guangzhou Municipal Science and Technology Project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3