Rapid Identification of Rhizobia Nodulating Soybean by a High-Resolution Melting Analysis

Author:

Jarzyniak Karolina1ORCID,Narożna Dorota1

Affiliation:

1. Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland

Abstract

Soybean [Glycine max (L.) Merr.] is one of the most important and oldest crops. Due to its ability to form symbiotic interactions with nitrogen-fixing bacteria, it is a valuable source of nitrogen for agriculture and proteins for humans and livestock. In Europe, for instance, in Poland, the soybean cultivation area is still not large but is gradually increasing due to climate change. The lack of indigenous soybean microsymbionts in Polish soils forces the application of commercial strains to establish effective symbioses. Fast and reliable identification methods are needed to study the persistence, competitiveness, and dispersal of bradyrhizobia introduced as inocula. Our study aimed to apply real-time PCR coupled with high-resolution melting curve (HRM) analysis to detect and differentiate bacterial strains occupying soybean nodules. HRM-PCR was performed on crude extracts from nodules using primers specific for recA, a highly conserved nonsymbiotic gene. By comparing them with the reference strains, we were able to identify and assign Bradyrhiobium strains that had been introduced into field locations in Poland. In conclusion, HRM analysis was proven to be a fast and accurate method for identifying soybean microsymbionts and might be successfully used for identifying other legume-nodulating bacteria.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3