Abstract
Effective management of dairy farms requires an accurate prediction of pasture biomass. Generally, estimation of pasture biomass requires site-specific data, or often perfect world assumptions to model prediction systems when field measurements or other sensory inputs are unavailable. However, for small enterprises, regular measurements of site-specific data are often inconceivable. In this study, we approach the estimation of pasture biomass by predicting sward heights across the field. A convolution based sequential architecture is proposed for pasture height predictions using deep learning. We develop a process to create synthetic datasets that simulate the evolution of pasture growth over a period of 30 years. The deep learning based pasture prediction model (DeepPaSTL) is trained on this dataset while learning the spatiotemporal characteristics of pasture growth. The architecture purely learns from the trends in pasture growth through available spatial measurements and is agnostic to any site-specific data, or climatic conditions, such as temperature, precipitation, or soil condition. Our model performs within a 12% error margin even during the periods with the largest pasture growth dynamics. The study demonstrates the potential scalability of the architecture to predict any pasture size through a quantization approach during prediction. Results suggest that the DeepPaSTL model represents a useful tool for predicting pasture growth both for short and long horizon predictions, even with missing or irregular historical measurements.
Funder
National Institute of Food and Agriculture
Subject
Agronomy and Crop Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献