Cover Crop Introduction in a Mediterranean Maize Cropping System. Effects on Soil Variables and Yield

Author:

Silvestri NicolaORCID,Grossi NicolaORCID,Mariotti MarcoORCID,Arduini IdunaORCID,Guglielminetti Lorenzo,Raffaelli Michele,Cardelli Roberto

Abstract

Cover crops (CCs) are able to affect subsequent crop behaviour by acting on many soil variables and affecting the dynamics of different ecological processes. This study aimed to investigate the effects of introducing CC in continuous-maize cropping systems within Mediterranean areas. The experimental site was located in Central Italy, on a sandy loam and the research activity was carried out over two years (2019–2020). The two cropping systems in comparison differed from each other in terms of the CC cultivation: TR (treated, with CC) and CO (control, without CC). In both years, we observed a significant reduction (p < 0.05) of soil nitrate and water content for the TR system. In the shallowest layer (0–30 cm), nitrate content was reduced by up −80% and −65% (July 2019 and 2020), whereas soil moisture showed decreases ranging from −13% (July 2019) to −34% (May 2019). In 2019, the TR-maize (Zea mays L.) yield was statistically lower than CO (−443 g dm m−2), whereas in 2020 the yields of the two systems resulted statistically equivalent. This different behaviour can be explained with the serious delay in the CC sowing occurred in 2019 (12 December). Conversely, an increase in the apparent remaining N in the soil (+140 and +133 kg N ha−1 for 2019 and 2020, respectively) and in the C (carbon) inputs (+4.78 and +7.39 t dm ha−1 of biomass) were pointed out for the TR system. The large use of inputs in Mediterranean maize cropping systems limited some of the benefits from CCs, but their suitability has to be evaluated by considering all the involved effects, some of which need a long time to become appreciable.

Funder

Università di Pisa

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3