Affiliation:
1. College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, China
2. Liaoning Key Laboratory of Intelligent Agricultural Technology, Shenyang 110866, China
Abstract
Leaf blast is recognized as one of the most devastating diseases affecting rice production in the world, seriously threatening rice yield. Therefore, early detection of leaf blast is extremely important to limit the spread and propagation of the disease. In this study, a leaf blast-specific spectral vegetation index RBVI = 9.78R816−R724 − 2.08(ρ736/R724) was designed to qualitatively detect the level of leaf blast disease in the canopy of a field and to improve the accuracy of early detection of leaf blast by remote sensing by unmanned aerial vehicle. Stacking integrated learning, AdaBoost, and SVM were used to compare and analyze the performance of the RBVI and traditional vegetation index for early detection of leaf blast. The results showed that the stacking model constructed based on the RBVI spectral index had the highest detection accuracy (OA: 95.9%, Kappa: 93.8%). Compared to stacking, the detection accuracy of the SVM and AdaBoost models constructed based on the RBVI is slightly degraded. Compared with conventional SVIs, the RBVI had higher accuracy in its ability to qualitatively detect leaf blast in the field. The leaf blast-specific spectral index RBVI proposed in this study can more effectively improve the accuracy of UAV remote sensing for early detection of rice leaf blast in the field and make up for the shortcomings of UAV hyperspectral detection, which is susceptible to interference by environmental factors. The results of this study can provide a simple and effective method for field management and timely control of the disease.
Funder
Liaoning Province Applied Basic Research Program Project
National Natural Science Foundation of China Youth Program
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献