Diversity Characterization of Soybean Germplasm Seeds Using Image Analysis

Author:

Kim Seong-HoonORCID,Jo Jeong Won,Wang Xiaohan,Shin Myoung-Jae,Hur On Sook,Ha Bo-KeunORCID,Hahn Bum-SooORCID

Abstract

Soybean (Glycine max) is a native field crop in Northeast Asia. The National Agrobiodiversity Center (NAC) in Korea has conserved approximately 26,000 soybean germplasm and distributed them to researchers and growers. The phenotype traits of soybean were investigated during periodic multiplication. However, it is time-consuming to collect sufficient data, especially on the width and height of seeds. During the last decade, the development of phenomics efficiently assisted the analysis of high-throughput phenotyping seed morphology. This study collected and analyzed seed morphological traits of 589 germplasm (53,909 seeds) from diverse origins using a digital camera and a computer-based seed phenotyping program. Measured traits included size and shape, 100-seed weight, height, width, perimeter, area, aspect ratio (AR), solidity, circularity, and roundness. The diversity of soybean germplasm seeds was analyzed based on 8-seed morphological traits and 100-seed weight, as determined by image phenotyping and direct weighting, respectively. The data obtained from 589 soybean germplasm were divided into five clusters by k-means clustering. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) were performed to compare clusters. The major differences between clusters were in the order of area, perimeter, 100-seed weight, width, and height. Based on cultivar origins, the seed size of US origin was the largest, followed by Korea and China. We classified size, shape, and color according to the International Union for the Protection of New Varieties of Plants (UPOV) guidelines. In particular, we postulated that shape could be distinguished based on the AR and roundness values as secondary parameters. High-throughput phenotyping could make a decisive contribution to resolving the phenotyping bottleneck. In addition, rapid and accurate analysis of a large number of seed phenotypes will assist breeders and enhance agricultural competitiveness.

Funder

National Academy of Agricultural Science

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference44 articles.

1. The history of the soybean;Hymowitz,2008

2. Soybean Trade: Balancing Environmental and Socio-Economic Impacts of an Intercontinental Market

3. RDA-Genebankhttp://genebank.rda.go.kr/

4. Genetic diversity in soybean;Carter;Soybeans Improv. Prod. Uses,2004

5. Phenomics – technologies to relieve the phenotyping bottleneck

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3