Low Plant Density Improves Fruit Quality without Affecting Yield of Cucumber in Different Cultivation Periods in Greenhouse

Author:

Ding XiaotaoORCID,Nie WenfengORCID,Qian TingtingORCID,He Lizhong,Zhang Hongmei,Jin Haijun,Cui Jiawei,Wang Hong,Zhou QiangORCID,Yu Jizhu

Abstract

With the development of the economy, the demand for cucumber quality is quickly increasing. The aim of this study was to elucidate the role that plant density plays in leaf photosynthesis, shoot dry matter distribution, yield and quality of cucumber in different cultivation periods under greenhouse conditions. Experimental treatments based on three plant density treatments (2.25, 3.0 and 3.75 plants m−2) were conducted in turn during three growth and harvest periods in a year. The results showed that the changes in photosynthesis and weekly yield per unit area were different and dependent on the harvest time, which was mainly induced by temperature and radiation. Interestingly, we found that reducing plant density did not significantly affect the photosynthesis of leaves and did not decrease weekly yield per unit area and total yield. Low-density treatment had the highest weekly yield per plant and total yield per plant in the three harvest periods, the highest ratio of dry matter being allocated to fruits and the highest contents of soluble sugar, total phenols, flavonoid, soluble protein, vitamin C (Vc), chlorophyll and carotenoids in fruits. Moreover, a relatively low nitrite content was found in fruits following low-density treatment. The study indicated that low-density treatment was associated with a high quality of fruits without reducing the cucumber’s total annual yield under natural light in the greenhouse. Hence, our study suggests that properly reducing cucumber plant density to 2.25 plants m−2 could be a practicable approach for greenhouses in Shanghai, China.

Funder

National Key Research and Development Program of China

Shanghai Science and Technology Committee Program

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference49 articles.

1. Shanghai Greenhouse Vegetable Production and Agriculture Tour Experience;Zhu;Acta Hortic.,2008

2. Model Simulation of Cucumber Yield and Microclimate Analysis in a Semi-closed Greenhouse in China

3. Optimal Utilization of Light Energy in Semi-Closed Greenhouse Using Three-Dimensional Cucumber Model;Qian;Sci. Program.,2020

4. Advances in Understanding and Harnessing the Molecular Regulatory Mechanisms of Vegetable Quality

5. The Formation of Fruit Quality in Cucumis sativus L.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3