Fabrication of Copper Oxide Nanoparticles Using Passiflora edulis Extract for the Estimation of Antioxidant Potential and Photocatalytic Methylene Blue Dye Degradation

Author:

Yasin Amina,Fatima Urooj,Shahid SammiaORCID,Mansoor Sana,Inam Hina,Javed MohsinORCID,Iqbal ShahidORCID,Alrbyawi Hamad,Somaily Hamoud H.,Pashameah Rami Adel,Alzahrani Eman,Farouk Abd-ElAziem

Abstract

In the present work, copper oxide nanoparticles have been fabricated by using a biological method. Copper oxide nanoparticles (CuO NPs) have received more attention than other metal oxides due to their distinctive properties and applications. Plant-mediated synthesis of nanoparticles has gained the attention of researchers because of its simple and ecologically sustainable approach. The biosynthesis of CuO NPs included the use of Passiflora edulis leaf extract that acts as a stabilizing and reducing agent. A non-toxic, cost-effective, and ecologically acceptable method was the use of plant leaf extract in the biogenesis of nanoscale materials. UV-vis, SEM, FTIR, and XRD techniques were used to examine the biologically produced copper oxide nanoparticles. The findings of the SEM examination, which gives morphological information, demonstrate that the synthesized NPs have a spherical shape and have an average particle size of between 60 and 65 nm. CuO has been further investigated in the current study as a photo-catalyst in the methylene blue (MB) dye degradation and as an antioxidant in free radical scavenging activities. The decolorization efficiency was approximately 93% after 160 min. Furthermore, CuO nanoparticles were tested for antioxidant performance by scavenging 2, 2-diphenyl-1-picrylhydrazyl hydrate free radicals (DPPH) and evaluated by UV-Vis spectroscopy. The result showed that biologically synthesized CuO NPs can be used as an effective antioxidant. The half maximal inhibitory concentration IC50 of copper oxide nanoparticles was found to be in the range of 0.13–0.20.

Funder

Umm al-Qura University

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3