A Metallochaperone HIPP33 Is Required for Rice Zinc and Iron Homeostasis and Productivity

Author:

Cao Hong Wei,Li Cao,Zhang Bai Qing,Rono Justice KipkorirORCID,Yang Zhi Min

Abstract

Both zinc (Zn) and iron (Fe) are essential micro-nutrients for plant growth and development, yet their levels in plants are tightly regulated to prevent either deficiency or phytotoxicity. In agronomic reality, such an imbalance of metal bioavailability to crops occurs frequently. Thus, mining genetic resources to improve crop traits relevant to metal homeostasis is a great challenge to ensure crop yield and food quality. This study functionally identified an uncharacterized metallochaperone family HIPP protein gene Heavy Metal Associated Isoprenylated Plant Proteins 33 (OsHIPP33) in rice (Oryza sativa). OsHIPP33 resides in the nucleus and plasma membrane and constitutively expresses throughout the lifespan. Transcription of OsHIPP33 is not induced by deprivation of Zn and Fe but upregulated under excessive Zn and Fe stress. In a short-term (one month) hydroponic study with the normal Zn and Fe supply, there were no significant changes in the growth and metal accumulation between the knockout (OsHIPP33) or knockdown (RNA interference) mutant lines and wild-type, while the long-term field trials (for two successive years) demonstrated that the mutation of OsHIPP33 significantly compromised the rice growth and development (such as rice leave tissues, panicle length, spikelet fertility, seed weight per plant, 1000-grain weight, etc.), with the mature grain yield of OsHIPP33 and RNAi lines reduced by 52% and 12–15% respectively, compared with wild-type. Furthermore, the accumulation of Zn and Fe in rice straw, husk and brown rice was also reduced. These results suggest that the disruption of OsHIPP33 can dampen rice agronomic traits, signifying that OsHIPP33 expression is required for Zn and Fe homeostasis and subsequent production of rice grains.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference49 articles.

1. Marschner’s Mineral Nutrition of Higher Plants;Marschner,2011

2. Estimating the Global Prevalence of Zinc Deficiency: Results Based on Zinc Availability in National Food Supplies and the Prevalence of Stunting

3. The Role of Food and Nutrition System Approaches in Tackling Hidden Hunger

4. Variability for yield, yield related traits and association among traits of sorghum (Sorghum Bicolor (L.) Moench) varieties in Wollo, Ethiopia;Amare;J. Plant Breed. Crop Sci.,2015

5. Iron Uptake, Translocation, and Regulation in Higher Plants

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3