Microbiome Analysis Revealed the Effects of Environmental Factors on the Presence of Toxigenic Fungi and Toxin Production in Rice Grains

Author:

Zhang Fengmin1,Cao Zhenzhen1,Zhao Xiaohua1,Yan Qing1,Guan Meiyan1,Chen Mingxue1,Lin Xiaoyan1ORCID

Affiliation:

1. Rice Product Quality Inspection and Testing Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, China

Abstract

Fungal contamination in rice and mycotoxins present significant challenges to both rice quality and food safety. However, there is a dearth of comprehensive research on the compositional and structural changes within fungal colonies in rice, particularly in typical rice-producing regions, as well as their underlying influencing factors. In this study, a comprehensive analysis of fungal taxa in rice grains was conducted using amplicon sequencing and bioinformatics methods on 99 rice samples collected in three major rice-producing regions in China: Northeast Plain (NP), Yangtze River Basin (YR), and Southeast Coastal Area (SC). A total of 6,019,722 fungal ITS sequences were obtained with an average sequence length of 235 base pairs, and effective ASVs (2014) accounted for approximately 97.58% of the total ASVs (2064). The fungal community diversity in rice grains exhibited significant variations across the three regions, with deterministic processes playing a predominant role in shaping the ecological dynamics of fungal taxa. Among the core microbiota (92 shared ASVs), the first five species (Alternaria, Fusarium, Curvularia, Epicoccum, and Ustilaginoidea) accounting for a proportion greater than 5% had been reported as potential pathogens for plants. Geographical variations in fungal community composition were evident, with a significantly higher number of shared populations observed between YR and CS regions compared to those in the NP region. Nutrient elements and climatic conditions were the internal and external driving factors of rice fungal community composition. Additionally, notable regional variations in fungal functionality were observed. The findings have significant implications for gaining a comprehensive understanding of the distribution patterns of fungal communities in the major rice-producing regions in China. Additionally, it provides valuable insights into controlling key influencing factors to effectively reduce the occurrence of toxin-producing fungi and mitigate the associated risks related to mycotoxin contamination, thereby contributing to improved risk management and assessment.

Funder

“Pioneer” and “Leading Goose” R&D Program of Zhejiang Province, China

Zhejiang Provincial Natural Science Foundation of China

Central Public Interest Scientific Institution Basal Research Fund for China National Rice Research Institute

China Agriculture Research System

Agricultural Science and Technology Innovation Program, China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3