Synthesis of Zinc Oxide Nanoparticles and Their Applications in Enhancing Plant Stress Resistance: A Review

Author:

Wang Zijun1,Wang Sijin2,Ma Tingting1,Liang You2,Huo Zhongyang2,Yang Fengping1

Affiliation:

1. College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China

2. Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China

Abstract

Biotic and abiotic stress factors are pivotal considerations in agriculture due to their potential to cause crop losses, food insecurity, and economic repercussions. Zinc oxide nanoparticles (ZnO nanoparticles) have gained substantial attention from researchers worldwide for their capacity to alleviate the detrimental impacts of both biotic and abiotic stress on plants, concurrently reducing dependence on environmentally harmful chemicals. This article provides an overview of methods for synthesizing ZnO nanoparticles, encompassing physical vapor deposition, ball milling, hydrothermal methods, solvothermal methods, precipitation methods, microwave methods, microbial synthesis, and plant-mediated synthesis. Additionally, it delves into the absorption, translocation, and biotransformation pathways of ZnO nanoparticles within plants. The emphasis lies in elucidating the potential of ZnO nanoparticles to safeguard plants against biotic and abiotic stress, enhance plant performance, and modulate various plant processes. The article also offers a preliminary exploration of the mechanisms underlying plant stress tolerance mediated by ZnO nanoparticles. In conclusion, ZnO nanoparticles present an environmentally friendly and cost-effective strategy for plant stress management, paving the way for the integration of nanotechnology in sustainable agriculture. This opens new possibilities for leveraging nanotechnology to bolster plant resilience against stress in the ever-changing climate conditions, ensuring global food security.

Funder

National Key Research and Development Program of China

Jiangsu Provincial Key Research and Development Program

Carbon Peak Carbon Neutral Science and Technology Innovation Special Fund of Jiangsu Province

Jiangsu Agricultural Science and Technology Innovation Fund

Earmarked Fund for CARS

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3