Affiliation:
1. College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
2. Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
Abstract
Biotic and abiotic stress factors are pivotal considerations in agriculture due to their potential to cause crop losses, food insecurity, and economic repercussions. Zinc oxide nanoparticles (ZnO nanoparticles) have gained substantial attention from researchers worldwide for their capacity to alleviate the detrimental impacts of both biotic and abiotic stress on plants, concurrently reducing dependence on environmentally harmful chemicals. This article provides an overview of methods for synthesizing ZnO nanoparticles, encompassing physical vapor deposition, ball milling, hydrothermal methods, solvothermal methods, precipitation methods, microwave methods, microbial synthesis, and plant-mediated synthesis. Additionally, it delves into the absorption, translocation, and biotransformation pathways of ZnO nanoparticles within plants. The emphasis lies in elucidating the potential of ZnO nanoparticles to safeguard plants against biotic and abiotic stress, enhance plant performance, and modulate various plant processes. The article also offers a preliminary exploration of the mechanisms underlying plant stress tolerance mediated by ZnO nanoparticles. In conclusion, ZnO nanoparticles present an environmentally friendly and cost-effective strategy for plant stress management, paving the way for the integration of nanotechnology in sustainable agriculture. This opens new possibilities for leveraging nanotechnology to bolster plant resilience against stress in the ever-changing climate conditions, ensuring global food security.
Funder
National Key Research and Development Program of China
Jiangsu Provincial Key Research and Development Program
Carbon Peak Carbon Neutral Science and Technology Innovation Special Fund of Jiangsu Province
Jiangsu Agricultural Science and Technology Innovation Fund
Earmarked Fund for CARS
Priority Academic Program Development of Jiangsu Higher Education Institutions
Subject
Agronomy and Crop Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献